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Abstract
In this paper, we propose a novel algebraic and geometric description for the
dissipative dynamics. Our formulation bears some similarity to the Poisson
structure for non-dissipative systems. We develop a canonical description for
constrained dissipative systems through an extension of the Dirac brackets
concept, and we present a new formula for calculating Dirac brackets. This
formula is particularly useful in the description of dynamical systems with many
second-class constraints. After presenting the necessary formal background
we illustrate our method on several examples taken from particle dynamics,
continuum media physics and wave mechanics.

PACS numbers: 03.65.Yz, 02.20.Sv, 02.40.−k

1. Introduction

The first systematic attempt to provide a mathematically consistent quantization procedure
for constrained systems was made by Dirac [1], who derived a formal ‘replacement’ for the
canonical Poisson brackets, which today plays a fundamental role in the canonical formalism
for the constrained Hamiltonian systems on both classical and quantum levels. In spite of the
considerable attention paid to this formula in the mathematical literature [2–4] and several
attempts to use the Dirac brackets in the quantization of gauge invariant systems [5, 6],
until recently there were few attempts to actually use this formalism in more conventional
applications. We have recently provided a few examples of these applications in classical and
continuum mechanics [7].

The canonical formalism applies to conservative systems. These systems form a relatively
small sub-class of interesting physical systems, since most of the other systems describing
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this phenomenon at some effective rather than fundamental level are dissipative. In the past,
several attempts were made to describe dissipative classical mechanics in a manner similar
to its canonical description. One of these attempts, i.e. the so-called metriplectic approach
[8, 9], was advocated as a natural extension of the mixed canonical–dissipative dynamic
proposed by Enz [10]. In this paper, we extend further the concept of the metriplectic
dynamics to what we shall call semimetric–Poissonian dynamics, which is nothing but a
natural combination of semimetric dynamics (a dissipative part) and Poissonian dynamics
(a conservative part). We propose a canonical description for the constrained dissipative
systems through an extension of the concept of Dirac brackets [1] developed originally for
conservative constrained Hamiltonian dynamics, to the non-Hamiltonian, namely metric and
mixed metriplectic, constrained dynamics. It turns out that this generalized unified formula for
the Dirac brackets is very useful in the description and analysis of a wider class of dynamical
systems. To proceed with our approach we develop a new formula for calculating Dirac
brackets which is particularly effective in finding equations of motion and constants of motion
for systems with many constraints.

In order to make this paper self-contained we include in section 2 a short ‘primer’ to the
Poisson geometry, dynamics and Dirac brackets.

The rest of the paper is organized into four sections. In section 3 we discuss semimetric
dynamics and some elementary features of the related mathematical structures such as
semimetric algebras and SJ identity, the latter should be regarded as a dynamical symmetric
version of the Jacobi identity. We develop symmetric concepts in analogy with those in the
Poisson category in the appendix.

In section 4 we discuss semimetric dynamics subject to some constraints. We derive
a symmetric analogue of the Dirac brackets and provide its geometric interpretation as an
induced metric on some submanifolds of a Riemannian manifold. We also present a new
effective algorithm for calculation of the Dirac brackets in both symmetric and antisymmetric
cases. A few examples, for finite and infinite dimensional cases, are also discussed in some
detail.

In section 5, we discuss semimetric–Poissonian dynamics which is a combination of
semimetric dynamics, discussed in section 3, and Poissonian dynamics mentioned in section 2.
This section also includes the extended Dirac approach to constrained semimetric–Poissonian
dynamics, which is a combination of the Dirac approach to constrained semimetric dynamics
discussed in section 4 and the usual approach to constrained Poissonian dynamics.

In section 6, we discuss some interesting physical examples: the dissipative formulation
of the Schrödinger equation due to Gisin [11], the Landau–Lifshitz–Gilbert equations for
damped spins [8, 12] and the dynamics of a damped body—including among others the
Morrison equation of a damped rigid body [9]. We also discuss a novel description of the
incompressible viscous fluid.

Some important but not crucial mathematical aspects of the extended canonical formalism
for constrained metric and mixed semimetric–Poissonian systems will be given in a
forthcoming publication [13]. Computational aspects of the Dirac brackets—symmetric,
antisymmetric or mixed—will be published shortly [14].

2. Poisson geometry, dynamics and Dirac brackets

From the algebraic point of view the Poisson algebra is a linear space F equipped with two
structures:
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(i) the commutative algebra structure with the (associate) multiplication F × F → F ; the
product of two elements f, g is denoted simply by fg,

(ii) the Lie algebra structure with the Lie bracket {·, ·}: F × F → F ; the product of two
elements f, g is denoted by {f, g},

related to each other by the Leibniz rule:

{fg, h} = f {g, h} + {f, h}g. (2.1)

The Lie bracket of a Poisson algebra is called the Poisson bracket.
The Poisson manifold is a smooth manifold M for which the commutative algebra of

smooth functions on M,C∞(M) is equipped with the Poisson bracket. The Poisson bracket
{·, ·} acts on each function as a derivation, thus there exists a contravariant (2, 0)-tensor �
such that {f, g} = �(df, dg) for every functions f, g. In the local coordinates (zk)

{f, g}(z) =
m∑
i,j

�ij (z)∂if ∂jg ∂k ≡ ∂

∂zk
. (2.2)

The tensor � which defines a Poisson bracket is called a Poisson tensor. The antisymmetry
of a Poisson bracket implies that the tensor � must be antisymmetric, so �ij = −�ji . The
Jacobi identity requires that

N∑
l=1

�li∂l�
jk + �lj ∂l�

ki + �lk∂l�
ij = 0. (2.3)

A Hamiltonian vector field generated by a function h is a vector field defined byXh(f ) = {f, h}
for every function f . All flows generated by the Hamiltonian vector fields—the Hamiltonian
flows, preserve the Poisson structure.

Poisson dynamics or generalized Hamiltonian dynamics is a dynamics generated by some
Hamiltonian vector field, for which the Hamiltonian function plays a physically specific role.

Let TM and T ∗M denote the tangent and cotangent bundle of the manifold M. The Poisson
tensor � induces a bundle map ��: T ∗M → TM which is defined by ��(df ) := Xf

for all functions f . The rank of a Poisson structure at point z is defined to be the
rank of �

�
z: T ∗

z M → TzM , which is equal to the rank of matrix �ij (z) in the local
coordinates (zk). A Poisson structure with constant rank equal to the dimension of the
manifold M is called symplectic or nondegenerate. In this case the ‘inverse map’ of �,
denoted by ω, is a symplectic 2-form and ω(Xf ,Xg) = {f, g} = �(df, dg). The Darboux
theorem states that for every symplectic structure there exists, locally, a canonical coordinate
system (x1, . . . , xk, p1, . . . , pk) such that � = ∂

∂x ∧ ∂
∂p , (ω = dx ∧ d p), or equivalently,

{xi, xj } = {pi, pj } = 0, {xi, pj } = δij .
The invariance of the Poisson structure under the Hamiltonian flows implies the constancy

of the tensor � rank along the orbits of such flows. The orbit of each point of M under the
action of all Hamiltonian flows forms a symplectic manifold called a symplectic leaf. Since
M is a union of such orbits, every Poisson manifold is a smooth union of disjoint connected
symplectic manifold (symplectic leaves) of various ranks.

The splitting theorem [15] for Poisson manifolds states that locally every Poisson manifold
is the product of a symplectic manifold and a Poisson manifold with zero rank. In other
words, locally in the neighbourhood of the point z0 there always exists a canonical coordinate
system: (x1, . . . , xk, p1, . . . , pk, z2k+1, . . . , zn) such that {xi, xj } = {pi, pj } = 0, {xi, pj } =
δij , {xi, zl} = {pj , zl} = 0, {zr, zs} = Ars and Ars(z0) = 0.

The map ϕ: M1 → M2 between two Poisson manifolds is called a Poisson mapping iff
{f ◦ ϕ, g ◦ ϕ}1 = {f, g}2 ◦ ϕ. The Poisson mapping is a natural generalization of the
well-known classical mechanics notion of the canonical transformation.
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In the usual formulation of classical mechanics the constrained dynamics can be visualized
geometrically as the dynamics on some submanifold of the system phase space. Similarly,
the constrained Poisson dynamics can be represented as such on some submanifold of the
Poisson manifold. However, it is not always possible to define induced Poisson structure on
a submanifold and therefore we have no obvious way to generalize constrained Poisson
dynamics. If the Poisson structure is non-degenerate (symplectic case) then on each
submanifold there exists an induced 2-form which becomes symplectic if it is non-degenerate.
Further, for an arbitrary submanifold N of a symplectic manifold (M,ω) there always exists
a maximal submanifold N ′ ⊂ N such that ω|N ′ is non-degenerate, then N ′ has an induced
symplectic, hence Poisson, structure.

Dirac [1] has proposed an algebraic procedure to deal with the constrained dynamics. First,
consider any finite set of (linearly independent) constraints A = {a1, . . . , ak} ⊂ F ≡ C∞(M)

and define weakly vanishing (or weakly zero) elements as linear combinations of constraints
with arbitrary function coefficients, i.e. I = {∑

i fiai,wherefi ∈ F, ai ∈ A}
.

Element f ∈ F is called first-class with respect to the set of constraintsA iff it has weakly
zero bracket with all constraints, i.e. ∀a ∈ A : {f, a} ∈ I. Otherwise, it is called second-class.
The set of all first-class elements denoted by F1(A), forms a linear subspace of F and the set
of all second-class elements denoted by F2(A).

This classification divides the set of constraints into two subsets: first-class constraints
A1 = A ∩ F1(A) and second-class constraintsA2 = A ∩ F2(A). The number of second-class
constraints must be even A2 = {!1, . . . ,!2s}. Dirac has proved that the Gramm matrix of
second-class constraints, [{!i,!j }] = W , is weakly non-degenerate. This allowed him to
define a new antisymmetric Leibniz bracket, known as the Dirac bracket:

{f, g}D = {f, g} −
2s∑

i,j=1

{f,!i}Cij {!j, g} (2.4)

where C = [Cij ] = W−1 is an inverse matrix of W . Using (2.4) one can check that the Dirac
brackets possess all the required properties of the Poisson brackets. The (algebraic) proof of
the Jacobi identity is difficult. One can also check that all the second-class constraints are
Casimirs with respect to the Dirac bracket, i.e. {!k, f }D = 0 for all f .

3. Semimetric manifolds and semimetric dynamical systems

In this section, we introduce a concept of semimetric algebras and semimetric manifolds which
play a similar role in the description of dissipative systems as the Poisson algebras and the
Poisson manifolds in the description of conservative dynamics. In the last two sections of
this work, we will show that the semimetric structure together with the Poisson structure are
sufficient for ‘canonical’ description of a wide class of dissipative dynamical systems.

Let X be a non-empty set. A semimetric bracket on the linear space of real functions
defined on X, namelyF = Fun(X), is a bilinear operation≺·, ·�: F×F → F which satisfies
the following requirements:

(i) It is symmetric: ∀f, g ∈ F : ≺f, g� = ≺g, f�.
(ii) It satisfies the Leibniz rule: ∀f, g, h ∈ F : ≺fg, h� = ≺f, h�g + f≺g, h�.

(iii) It is non-negative definite: ∀f ∈ F : ≺f, f� � 0, i.e. the function ≺f, f� is a non-
negative definite function, ∀x ∈ X: ≺f, f�(x) � 0.

Note that if a bilinear operation on F satisfies conditions (i) and (ii), it is called a pseudo-
metric bracket or symmetric Leibniz bracket. A symmetric Leibniz bracket which satisfies the
condition
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(iii∗) positive definite: ∀f ∈ F : ≺f, f� � 0 and ≺f, f� = 0 iff f = const (at least locally),

is called a metric bracket.
A symmetric Leibniz algebra is a linear space F equipped with two structures:

commutative algebra structure with the (associate, commutative) multiplication and symmetric
(non-associate, non-commutative) structure and these two structures are related by the Leibniz
rule. A semimetric algebra is a symmetric Leibniz algebra whose bracket is semimetric.

As we shall see the semimetric algebra can be used to describe the wide class of dissipative
classical systems akin to the description of the non-dissipative dynamics by means of the
Poisson algebra.

From now on we assume that X is a smooth finite dimensional manifold, namely phase
space, and F = C∞(X) is a space of all smooth functions on X.

There is a one-to-one correspondence1 between the symmetric Leibniz brackets on the
space of functions and the symmetric tensors on the manifold X : ≺f, g� = G(df, dg),
where G is a contravariant tensor field of the type (2, 0) on X. In local coordinates (zk), each
symmetric tensor is of the form G(z) = ∑

i,j G
ij (z) ∂

∂zi
⊗ ∂

∂zj
, where Gij = Gji , hence each

symmetric Leibniz bracket locally must be of the form:

≺f, g�(z) =
N∑

i,j=1

Gij (z)
∂f

∂zi

∂g

∂zj
f, g ∈ C∞(X). (3.1)

A symmetric bracket becomes a semimetric bracket iff it is non-negative, i.e. the matrix [Gij ]
is non-negative definite.

A semimetric bracket is called a metric bracket if G is positive definite (non-negative and
non-degenerate), i.e. with constant maximal rank, rank G = dim X. In general, the tensor G
may have a non-constant rank which depends on points.

Definition 3.1. A semimetric manifold is a smooth manifold M for which the commutative
algebra of smooth functions on M is a semimetric algebra, i.e. it is equipped with a semimetric
bracket. Geometrically, a semimetric manifold can be viewed as a pair (M, G) where G is a
semimetric tensor (or cometric tensor), i.e. symmetric, non-negative definite: G(df, df ) � 0
for every function f , contravariant (2, 0)-tensor field.

Example 3.1. Tensor G(z) = ∑k
i=1

∂
∂zi

⊗ ∂
∂zi

− ∑n
j=k+1

∂
∂zj

⊗ ∂
∂zj

is symmetric and non-

degenerate, but it is not non-negative definite. Tensor G(z) = ∑k
i=1

∂
∂zi

⊗ ∂
∂zi

for k < n, and

tensor G(z) = z2
1

∂
∂z1

⊗ ∂
∂z1

+
(
z2

2z
2
3

)
∂
∂z2

⊗ ∂
∂z2

+
∑n

i=3 z
2
i

∂
∂zi

⊗ ∂
∂zi

are non-negative definite, but
degenerate.

A dissipative vector field generated by the function h is a vector field defined by
XD

h (f ) = ≺f, h� for all functions f . The flow generated by a dissipative vector field
should be called a dissipative flow. Dissipative flows essentially differ from the Hamiltonian
counterpart; they do not preserve the symmetric structure.

If the (2, 0)-tensor G is positive definite, there exists a symmetric (0,2)-tensorG, its inverse,

such that G(df, dh) = G
(
XD

f ,X
D
h

)
, which is exactly a Riemannian metric tensor. In the local

coordinates (zk), if G(z) = ∑
i,j G

ij (z) ∂
∂zi

⊗ ∂
∂zj

, the tensor G(z) = ∑
i,j Gij (z)dzi ⊗ dzj

where
∑

j G
ijGjk = δik.

The concept of semimetric manifold is then a natural generalization concept of the
Riemann manifold. It is analogous to a generalization from a symplectic manifold to the
Poisson manifold.
1 Note that this is true for smooth functions C∞(X), but false for Ck(X).
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Similarly, as in the Poissonian case, it is not always possible to define induced semimetric
structure on a submanifold, hence there is no obvious way to describe canonically constrained
semimetric dynamics.

The mapF: M1 → M2 between two semimetric manifolds is called a semimetric mapping
iff it maps the semimetric structures, i.e. ≺f ◦ F, g ◦ F�1 = ≺f, g�2 ◦ F .

Proposition 3.1. Let (F, ·,≺·, ·�) be a semimetric algebra.

(a) The Schwartz inequality holds

∀f, g ∈ F : ≺f, f�≺g, g� � ≺f, g�2. (3.2)

(b) Let f1, f2, . . . , fn be arbitrary elements of F . Then the square matrix

Gram(f1, . . . , fn) =




≺f1, f1� . . . ≺f1, fn�
≺f2, f1� . . . ≺f2, fn�

. . . . . . . . .

≺fn, f1� . . . ≺fn, fn�


 (3.3)

is non-negative definite. In particular, det Gram(f1, . . . , fn) � 0. Furthermore, if F is
a metric algebra, then det Gram(f1, . . . , fn) = 0 iff {fi}ni=1 are affine linear dependent.

Proof.

(a) Indeed, for each real number λ ∈ R the expression 0 � ≺f − λg, f − λg� =
λ2≺g, g�−2λ≺f, g�+≺f, f� is a non-negative quadratic form in the real number λ.
Hence, the discriminant � = 4≺f, g�2 − 4≺f, f�≺g, g� � 0 must be non-negative.

If F is a metric algebra, then ≺f, g�2 = ≺f, f�≺g, g� iff f , g are affine linear
dependent, i.e. f − λg = const.

(b) For each vector a = (a1, a2, . . . , an) ∈ Rn, denote a · f = ∑
i aifi , we have

aT Gram(f1, . . . , fn)a = ≺a · f , a · f� � 0. �

Example 3.2.

(1) The natural Euclidean metric of n-dimensional Euclidean space X = Rn induces a
natural metric structure on C∞(X)

≺f, g�(x) =
n∑

i=1

∂f

∂xi

∂g

∂xi
where f, g ∈ C∞(Rn) x ∈ Rn. (3.4)

We shall call the metric bracket (3.4) the Euclidean metric bracket.
(2) Here is a simple but general construction of the semimetric structure in the space of

smooth functionals over a Hilbert space. Let X be a Hilbert space with a scalar product
〈·|·〉 and A be a linear operator on X. One can define a semimetric structure on the space
of all smooth functionals over X as follows:

≺(,)�( f ) =
〈
A
δ(

δf

∣∣∣∣Aδ)

δf

〉
. (3.5)

For instance, let X be a Hilbert space of functions X = { f : Rn → Rd} with a scalar
product

( f |g) =
d∑

i,j=1

∫
dnx fi(x)Gij (x)gj (x)

where f = (f1, f2, . . . , fd ) g = (g1, g2, . . . , gd) ∈ X. (3.6)



On the Dirac approach to constrained dissipative dynamics 9287

The above scalar product on X defines a semimetric bracket on the space of smooth
functionals over X by

≺(,)�( f ) =
d∑

i,j=1

∫
dnx

δ(

δfi(x)
Gij (x)

δ)

δfj (x)
(3.7)

where (,) ∈ C∞(X).
To be specific, let n = d and G be a differential operator of the form D+D, for instance,

let Gij (x) = −
[
a ∂2

∂xi∂xj
+ bδij�

]
, where a, b � 0 and � denotes the Laplace operator.

The symmetric bracket (3.7) now assumes the form

≺(,)�( f ) =
∫

dnx
{
a

[
∇ · δ(

δf (x)

] [
∇ · δ)

δf (x)

]
+b

∑
i

[
∇ δ(

δfi(x)

]
·
[
∇ δ)

δfi(x)

]}
.

(3.8)

As we shall see this is exactly a semimetric bracket as needed in viscous fluid dynamics.

We shall call semimetric dynamics a dynamics which is governed by some semimetric
(dissipative) vector field. In the local coordinate system (zk), we have the following system
of first-order differential equations:

żi = ≺zi,S� = XD
S (z

i) =
N∑
j=1

Gij (z)
∂S
∂zj

i, j = 1, 2, . . . , N (3.9)

where ≺·, ·� is a semimetric bracket, XD
S is a dissipative vector field generated by function

S defined on the phase space and G is a semimetric tensor. In some very special cases, the
function S has a physical interpretation as entropy. S is always non-decreasing, since

Ṡ = ≺S,S� � 0. (3.10)

If f, g, are constants for semimetric dynamics, then the Leibniz rule ensures that fg is also a
constant, but ≺f, g� is usually not a constant due to the lack of the Jacobi identity. We shall
now introduce a new concept, a symmetric analogy of the Jacobi identity, which we call the
SJ identity.

(iv) SJ identity:

∀f, g, h ∈ F : 2≺≺f, g�, h� = [≺≺f, h�, g� + ≺≺g, h�, f�]

⇐⇒ ∀f, h ∈ F : ≺≺f, f�, h� = ≺≺f, h�, f�. (3.11)

A symmetric dynamical system is called a SP dynamics (‘symmetric–Poisson dynamics’)
iff the symmetric Jacobi identity (3.11) holds.

Proposition 3.2. If f, g are constants of the SP dynamics, then ≺f, g� is also a constant of
motion. In particular, if f is a constant, then ≺f, f� also.

Proof. %%%Indeed, since ≺f,S� = ≺g,S� = 0 we have
d
dt≺f, g� = ≺≺f, g�,S� = 1

2 [≺≺f,S�, g� + ≺≺g,S�, f�] = 0. (3.12)

�

Therefore, constants of SP dynamics form a subalgebra. This property is quite useful in
finding constants of motion for SP dynamics.
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Note that each autonomous dynamical system described by the system of the first-order
differential equations

ẋk = Fk(x1, . . . , xn) k = 1, . . . , n (3.13)

is a pseudo-metric system. Indeed, one can choose as the function S,S = ∑n
k=1 xk, and as a

diagonal pseudo-metric Gij (x) = δijFi(x).
Furthermore, locally and almost everywhere each dynamical system (3.13) is metric.

Indeed, for each point of the set {x: ∀k = 1, . . . , n: Fk(x) �= 0} there exists a neighbourhood
U such that functions Fk do not change their sign inside U. Let us denote sk = sign Fk = ±1
in U. In the neighbourhood U, the system should be regarded as a metric system with, for
instance, Gij (x) = siδ

ijFi(x) � 0 and S = ∑
k skxk. In particular, locally and almost

everywhere, Poisson dynamics also admits a metric description. Each dynamical system of
the type ẋk = Fk(x) should be regarded as the Poissonian system after doubling the number of
variables. Indeed, consider a canonical Poisson structure: {xi, xj } = 0 = {pi, pj }, {xi, pj } =
δij and let H(x, p) = ∑

k pkFk(x), the canonical equations follow:

ẋk = {xk,H} = Fk(x) ṗk = {pk,H} = −
∑
j

pj

∂Fj (x)
∂xk

. (3.14)

A system is non-Poissonian (or non-metric) if it cannot be written in the Poisson (resp.
metric) form without changing the number of variables. Each dynamical system of the type
ẋk = Fk(x), where functionsFk(x) are positive definite, is a metric system but it is (in general)
non-Poissonian. The answer to the question, which Poissonian system admits a global metric
description, remains unknown.

Morrison [9] has pointed out that metric dynamical systems admit an asymptotic stability
at isolated maxima of the function S. To show that, let x be an isolated maximum of S, then
certainly ∂iS = 0 at x, hence x is an equilibrium point of the semimetric dynamical system:
żi = ≺zi,S� = ∑

j G
ij (z)∂jS. Define the function L(z) = S(z) − S(x), then obviously

L(x) = 0 and L(z) < 0 in some neighbourhood of x, since x is the isolated maximum.
Furthermore, L̇(z) = ≺L,S�(z) = ≺S,S�(z) � 0 for z �= x and L̇(x) = 0, therefore L is
the Lyapunov function for the system and x is its stable equilibrium point. Now, if the system
is metric, then L̇(z) = ≺S,S�(z) > 0 for z �= x since the function S is not locally constant.
Hence x is an asymptotically stable point. Generalization of the above construction to the
infinite dimensional case is not known.

4. Constrained metric dynamics

In the framework of symplectic geometry, constrained Hamiltonian dynamics can be
represented by a triplet (M, N, ω) where (M, ω) is a symplectic manifold, namely phase
space, and N is a constraint submanifold of M. The antisymmetric Dirac bracket for second-
class constraints [1, 16] is nothing but the Poisson bracket on some symplectic manifold
N ′ ⊂ N , called the second-class constraint manifold [16] (also in [2]).

Similarly, constrained metric dynamics should be represented by a triplet (M, N, g) where
g is a metric tensor, which is responsible for a dissipation, and N is a constraint submanifold
of M. We show that the symmetric Dirac bracket for a triplet (M, N, g) is nothing but the
semimetric bracket on the submanifold N. It is worthy of note that any submanifold of a
Riemannian manifold is second-class with respect to the metric bracket defined by the metric
tensor.

Suppose that we have a pair (M, ξ)where M is a smooth manifold and ξ is a non-degenerate
symmetric (0, 2)-tensor on M. Then at each point x ∈ M the map ξx : TxM × TxM → R is
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bilinear, symmetric and non-degenerate and it induces a linear bijection ξ
�
x : T ∗

x M → TxM .
Further, if ξ is a Riemann metric tensor, then ξx is a scalar product on TxM . The non-
degeneracy of the tensor ξ guarantees the existence of a (2, 0)-tensor field 2: T ∗M×T ∗M →
R. Let N be a submanifold of M and ξ|N is supposed to be non-degenerate. Then at each
point x of the submanifold N, the linear space TxM decomposes into a direct sum of a tangent
space to N, TxN, and its orthogonal with respect to bilinear symmetric functional ξx , i.e.
TxM = TxN ⊕ (TxN)⊥. The symmetric Dirac bracket with respect to a triplet (M,N, ξ) is
defined by

2D(α, β) = ξ(Pξ�(α), P ξ�(β)) where P is a projection onto TxN along (TxN)⊥,
α, β are 1-forms on M. (4.1)

The symmetric Dirac bracket in the space of functions then becomes

≺f, g�D = 2D(df, dg) ∀f, g ∈ C∞(M). (4.2)

If N is the second-class submanifold

N = {x ∈ M: !i(x) = 0} (4.3)

then we derive an explicit formula for the symmetric Dirac bracket with respect to the
triplet (M,N, ξ). Let Xg denote a vector field generated by the function g, i.e.Xg(f ) =
2(df, dg) = ≺f, g� = ξ(Xf ,Xg). Let W = [Wij ] = [≺!i,!j�] = [ξ(X!i

,X!j
)] and

C = [Cij ] = W−1. It is easy to see that the vector fields X!i
span T N⊥, then orthogonal

projection Q onto T N⊥ along TN has the form

QX =
∑
i,j

ξ(X,X!i
)CijX!j

. (4.4)

Then the orthogonal projection P onto TN along T N⊥ is of the form PX = X −QX, hence
we have PXf = Xf − ∑

i,j ξ(X,X!i
)CijX!j

. Then the symmetric Dirac formula is of the
form

≺f, g�D = 2D(df, dg) = ξ(PXf , PXg) = ξ(Xf , PXg)

= ξ(Xf ,Xg)− ξ(Xf ,QXg)

= ≺f, g� −
∑
i,j

≺f,!i�Cij≺!j, g� (4.5)

which coincides with the antisymmetric Dirac bracket formula (2.4) for Poisson bracket with
the antisymmetric brackets {·, ·} replaced by ≺·, ·�. Our procedure shown above applies to
both the cases, for symmetric or antisymmetric (0, 2)-tensors.

The Dirac formula (4.5) plays a key role in the practical use of the Dirac brackets.
Algebraically, one may use it as a definition of the Dirac bracket for an arbitrary symmetric or
antisymmetric algebra. The disadvantage of the algebraic approach is based on the fact that it
is very difficult to understand why the Jacobi identity for the new Dirac bracket holds when
the above procedure is applied to a Poisson bracket. In the metric context, if the algebraic
formula (4.5) is regarded as a definition of the Dirac bracket, then it is easy to check that the
new algebraic Dirac bracket is a symmetric Leibniz bracket (i.e. the algebraic properties (i),
(ii) hold), but the crucial non-negativity property (iii) is not easy to verify. A simple proof will
be given later after theorem 4.1. It is easy to see that

≺!a, f�D = 0 for arbitrary function f (z) (4.6)

therefore all constraints !a are Casimirs, i.e. belong to the centrum of the semimetric algebra
(C∞(X),≺·, ·�D).

Now we would like to present the new formula for calculating the symmetric or
antisymmetric Dirac bracket.
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Theorem 4.1. [14]
The following identity holds:

≺f, g�D = detWf,g

detW
∀f, g ∈ F (4.7)

where

W =



≺!1,!1� . . . ≺!1,!N�
≺!2,!1� . . . ≺!2,!N�

. . . . . . . . .

≺!N,!1� . . . ≺!N,!N�




(4.8)

Wf,g =



≺!1,!1� . . . ≺!1,!N� ≺!1, g�
≺!2,!1� . . . ≺!2,!N� ≺!2, g�

. . . . . . . . . . . .

≺!N,!1� . . . ≺!N,!N� ≺!N, g�
≺f,!1� . . . ≺f,!N� ≺f, g�


 .

The same formula holds for antisymmetric Dirac brackets.

Proof. The proof is straightforward; one applies the Laplace recursive formula for the
determinant expansion twice to the last column and row of the matrix Wf,g . �

One consequence of (4.7), (4.8) for a semimetric bracket is that ∀f we have ≺f, f�D =
detWf,f

detW , and therefore the inequality ≺f, f�D � 0 holds, according to proposition 3.1. In the
one constraint case, this is equivalent to the Schwartz inequality.

Theorem 4.1 provides a new effective formula for calculating Dirac brackets for both
symmetric and antisymmetric cases. Usually, the direct attempt to use formula (4.5) is
impractical for a system with a rather large number of constraints of second type. This
is because it requires quite complicated evaluation of the elements of the inverse matrix
Cij . Note, however, that when we are not interested in the Dirac brackets but only in the
resulting equations for constrained dynamics then the evaluation of C = W−1 is unnecessary.
Applying theorem 4.1 we immediately find the equation for the quantity f in constrained
symmetric/antisymmetric dynamics:

ḟ = ≺f,H�D = det Wf,H
det W

or ḟ = {f,H}D = det Wf,H
det W

. (4.9)

This formula is particularly convenient for finding constants of motion for constrained—
symmetric and antisymmetric—dynamics. Indeed, f is a constant of motion for constrained
dynamics iff detWf,H = 0.

Below we show a few examples of the constrained symmetric Dirac brackets which are
applicable in differential geometry and physics.

Example 4.1. Consider the standard Euclidean metrics ≺zi, zj� = δij = Gij and the fixed
surface f (z) = 0 in Rn. Here the function f is assumed to be smooth and with zero as its
regular value, that is f −1(0) is a close regular (n − 1)-dimensional differential submanifold
in Rn. Using f (z) = 0 as a constraint we find the Dirac semimetric brackets

≺zi, zj�D = δij − ninj (4.10)

where n(z) = ∇f

||∇f || is a unit normal vector to the surface at z. The metric tensor

G
ij

D(z) = δij − ninj is nothing but the induced metric tensor on this surface.
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The following example illustrates how to derive the metric structure for lattice spins [8],
that is a set of classical spins  Sa where a labels the lattice sites.

Example 4.2. We introduce the usual lattice-spin metric brackets as

≺Si
a, S

j

b� = δabδ
ij |Sa| = G

ij

ab i, j = 1, 2, 3 a, b = 1, 2, . . . , N (4.11)

and we define 2N-dimensional surface P by the following system of N constraints:

!a(S) = |Sa|2 − r2
a =

3∑
i=1

(
Si
a

)2 − r2
a = 0 a = 1, 2, . . . , N. (4.12)

The Dirac metric brackets for the surface P are

≺Si
a, S

j

b�D = δij |Sa|
[
δab − Si

aS
j

b

S2
a

]
. (4.13)

�
The next example illustrates the metric structure for an energy-conserving rigid body.

Example 4.3.
One may postulate the metric brackets for a rigid body as

≺ωi, ωj� = δijK(ω) whereK is some function of the body angular frequencyω. (4.14)

(a) Consider energy as constrained surface

!(ω) =
3∑

k=1

Ikω
2
k − E. (4.15)

Calculating the Dirac metric brackets one gets

≺ωi, ωj�{!} = K(ω)

[
δij − IiIjωiωj∑

k I
2
k ω

2
k

]
. (4.16)

We can consider some particular cases:
(a1) One may choose K = ∑3

k=1 I
2
k ω

2
k , where Ik are moments of inertia with respect to

the main axes of the rigid body. Then the Dirac metric brackets are

≺ωi, ωj�{!} = δij

[
3∑

k=1

I 2
k ω

2
k

]
− IiIjωiωj . (4.17)

This metric structure coincides with the metric structure postulated by Morrison [9].
(a2) Since the Poisson structure of a rigid body is the same as for classical spins, we may

postulate K = |ω|, where |ω| =
√∑3

k=1 ω
2
k . The Dirac metric brackets follow

≺ωi, ωj�{!} = |ω|
[
δij − IiIjωiωj∑3

k=1 I
2
k ω

2
k

]
. (4.18)

(b) Consider the Poissonian Casimir as a constrained surface

!(ω) =
3∑

k=1

ω2
k − |ω0|2. (4.19)

The Dirac metric brackets follow

≺ωi, ωj�{!} = K(ω)

[
δij − ωiωj

|ω|2
]
. (4.20)
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For instance, K(ω) = |ω|, we get

≺ωi, ωj�{!} = |ω|
[
δij − ωiωj

|ω|2
]
. (4.21)

The next examples show how our formalism works in the Hilbert spaces.

Example 4.4. Let Ph = L2(Rn;Rd) be a Hilbert space of real, vector-valued square
integrable functions with standard scalar product 〈·|·〉, i.e. 〈 f |g〉 = ∫

dnx f (x) · g(x), where
f = (f1, . . . , fd ), g = (g1, . . . , gd). Let || f ||2 = 〈 f | f 〉. In the space of all smooth functionals
over Ph, according to the construction given in example 3.2, the semimetric structure may be
defined by

≺φ1, φ2�( f ) =
d∑

i=1

∫
dnx

[
δφ1

δfi(x)
δφ2

δfi(x)

]
φ1, φ2: Ph → R (4.22)

where δφi

δfk
denotes a Gateaux functional derivative.

Consider a surface of infinite dimensional sphere S∞ with radius r as a subspace with one
constraint

S∞ = { f ∈ Ph: || f ||2 = r2}. (4.23)

Now we calculate the Dirac metric structure for the sphere S∞. The metric bracket (4.22) can
be rewritten; introduce the canonical metric tensor G

Gij (x, y) = ≺fi(x), fj ( y)� = δij δ(x − y) (4.24)

as

≺φ1, φ2�( f ) =
∫

dnxdny
1

2

[
δφ1

δfi(x)
δφ2

δfj ( y)
+

δφ1

δfj ( y)
δφ2

δfi ( x)

]
≺fi(x), fj ( y)�. (4.25)

The Dirac semimetric structure on S∞ follows

≺fi(x), fj (y)�D = δij δ(x − y)− fi(x)fj (y)
|| f ||2 . (4.26)

Example 4.5. Let ) = )1 + i)2 and its complex conjugate )∗ = )1 − i)2 where )1,)2

are real functions integrated by square, i.e. they belong to the Hilbert space L2. We define
metric structure by

≺)k(x),)l( y)� = 1
2δklδ(x − y) where k, l = 1, 2. (4.27)

One can rewrite it in the form

≺)(x),)( y)� = ≺)∗(x),)∗( y)� = 0 ≺)(x),)∗( y)� = δ(x − y) (4.28)

which we call canonical metric bracket for quantum mechanics. The Dirac structure on the
sphere ||)|| = const in the Hilbert space follows

≺)(x),)( y)�D = −)(x))( y)
2||)||2 ≺)∗(x),)∗( y)�D = −)∗(x))∗( y)

2||)||2
(4.29)

≺)(x),)∗( y)�D = δ(x − y)− )(x))∗( y)
2||)||2 .

One gets the Dirac brackets of the components )k in accordance with (4.26)

≺)k(x),)l(y)�D = 1

2

[
δklδ(x − y)− )k(x))l( y)

||)||2
]
. (4.30)
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Example 4.6. (The canonical description for incompressible, viscous fluid dynamics is based
on this example). Let Ph = W(1,2)(Rn;Rn) be a Sobolev space of real functions. In the space
of all smooth functionals over Ph we introduce a semimetric structure

≺φ1, φ2�(J ) =
∫

dnx

{
a

[
∇ · δφ1

δJ(x)

] [
∇ · δφ2

δJ(x)

]
+ b

∑
i

∇
[

δφ1

δJi(x)

]
· ∇

[
δφ2

δJi(x)

]}

(4.31)

where J denotes the real vector in the n-dimensional Euclidean space and a, b are real non-
negative coefficients. We can rewrite this semimetric structure in the form

≺Ji(x), Jj ( y)� = −
[
a

∂

∂xi

∂

∂xj
+ bδij�

]
δ(x − y). (4.32)

Consider infinite-dimensional subspace V of divergence-free functions (incompressibility
condition) as a system with an infinite number of constraints:

V = {J ∈ Ph: ∀x !x(J ) = ∇x · J(x) = 0}. (4.33)

Then the Dirac semimetric structure for the subspace V follows:

≺Ji(x), Jj ( y)�D = −
[
a

∂

∂xi

∂

∂xj
+ bδij�

]
δ(x − y)

−
∫

dz dz′≺Ji(x),!(z)�C(z, z′)≺!(z′), Jj ( y)� (4.34)

where C is an inverse symmetric operator of the constraint matrix

C(x, y) = 1

a + b

∫
dz G(|x − z|)G(|z − y|) (4.35)

here G(|x− y|) denotes the standard Green function (fundamental distribution) of the Laplace
equation, i.e. �xG(|x− y|) = δ(x− y). Putting equation (4.35) back into equation (4.34) and
after some simple calculations finally we obtain

≺Ji(x), Jj ( y)�D = −b

[
δij�x − ∂2

∂xi∂xj

]
δ(x − y). (4.36)

Physically, the above equation (4.36) fully describes dissipative structure for an incompressible
viscous fluid. We shall see that more clearly in section 6.5.

5. Semimetric–Poissonian systems

Physical systems are usually dissipative. It turns out that both Poissonian and metric structures
alone are not enough to describe dissipative systems. However, a proper combination of these
two types of dynamics can, for many interesting cases, provide a satisfactory and fully algebraic
description of dissipative dynamics.

A semimetric–Poissonian bracket on the space of functions F = C∞(X) is a bilinear
operation {{·, ·}}: F × F → F which is a linear combination of a Poisson and a semimetric
bracket

∀f, g ∈ F : {{f, g}} = {f, g} − ≺f, g� (5.1)

where {·, ·} is the Poisson bracket and ≺·, ·� is the semimetric bracket.

Definition 5.1. The semimetric–Poisson manifold is a pair (M,�−G) where � is a Poisson
tensor, G is a semimetric tensor.
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We shall call a semimetric–Poissonian dynamics a dynamics governed by the following system
of equations:

żi = {{zi,(}} = {zi,(} − ≺zi,(� = X((z
i)−XD

((z
i) (5.2)

where ( is some phase space function. In real physical applications it is often the case that (
has the interpretation of the system free energy. It is then a matter of convention to choose a
minus sign in equation (5.2). Indeed, we have then

(̇ = {(,(} − ≺(,(� = −≺(,(� � 0 (5.3)

what describes the dissipation of energy.
It is often even more convenient to go a step further and decompose function ( into two

parts: the internal energy H and the dissipation function S, so ( = H − S. Hence, when S
is a Casimir of the Poissonian part, {f,S} = 0 for all f , the evolution of some ‘observable’ f
in the semimetric–Poissonian dynamics follows

ḟ = {{f,(}} = {f,H} − ≺f,H − S�. (5.4)

Equation (5.4) for f = S gives us the semimetric–Poissonian formulation for the ‘second law
of thermodynamics’, namely

Ṡ +≺S,H� = ≺S,S�� 0 (5.5)

where the expression on the left-hand side of equation (5.5) is just the convective time derivative
of S along the time trajectory in the semimetric–Poissonian phase space.

Note that if x is an isolated minimum of (, then the function L(z) = ((z) − ((x) is a
Lyapunov function for the semimetric-Poisson system. Hence, we obtain

Proposition 5.1. If x is an isolated minimum of the free energy function (, then x is a stable
equilibrium point for the semimetric–Poissonian system ż = {z,(} − ≺z,(�. Furthermore,
if the system is metric–Poissonian, then x is an asymptotically stable point.

Example 5.1. Consider a modification of the harmonic oscillator described by

ẋ1 = x2 − ax1
(
x2

1 + x2
2

)
ẋ2 = −x1 − ax2

(
x2

1 + x2
2

)
. (5.6)

This system is semimetric–Poissonian with

{x1, x2} = 1 ( = 1
2

[
x2

1 + x2
2

]
≺x1, x1� = ax2

1 ≺x2, x2� = ax2
2 ≺x1, x2� = ax1x2. (5.7)

Point (0, 0) is an isolated minimum of (, hence it is a stable equilibrium point for the system.
�

The proposed formal structure of Poissonian and semimetric dynamics in the preceding
sections allows us to suggest the following scheme for the construction of constrained
dissipative dynamics of real physical systems:

(a) Consider a canonical Poisson structure and a semimetric structure. The semimetric
structure must be postulated according to our physical insight into the nature of relevant
dissipative processes.

(b) Choose the sets A and B of the second-class constraints for the Poissonian and semimetric
part, respectively. Note that any constraint is second-class for non-degenerate semimetric
structure.

(c) Calculate antisymmetric and symmetric Dirac brackets with respect to the set of the
constraints A and B and later take a union of them.
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The most interesting cases take place when the set of constraints for the semimetric part is
a subset of constants of motion for the Poissonian part, i.e. the system is dissipative; however,
some of the constants of the Poisson dynamics remain constants for the semimetric–Poissonian
dynamics. One may use this feature to design many interesting dissipative systems. As an
example, we illustrate how to design a variety of damped rigid body dynamics in the next
section.

6. Applications: physical examples

6.1. Particle on the hypersurface with friction

We shall begin our illustration of the Dirac bracket applications by discussion of a simple
example, namely the classical particle moving with friction on a hypersurface Sconfig = {x ∈
Rn|f (x) = 0}. Denote the particle position by x and its conjugate momentum by p and let the
friction force experienced by that particle be proportional to the particle velocity. The phase
space R2n is now equipped with two structures: canonical Poisson and semimetric structure.
Then the following Poisson structure is described by

{xi, xj } = 0 = {pi, pj } {xi, pj } = δij (6.1)

and the semimetric structure is defined by

≺xi, xj� = 0 = ≺xi, pj� ≺pi, pj� = δijλi (6.2)

where λi(x) > 0 is the directional and space-dependent damping coefficient.
The semimetri–Poisson structure is defined by {{·, ·}} = {·, ·} − ≺·, ·�.

Consider H = p2

2m +V (x), the dissipative dynamics derived from the above structures follows

ẋi = {{xi,H}} = pi

m
ṗi = {{pi,H}} = −λi(x)

pi

m
− ∂V

∂xi
(6.3)

which can be rewritten in the Newtonian form mẍi +λi(x)ẋi −Fi(x) = 0, where F(x) = − ∂V
∂x

is a potential force. In particular, when λi(x) = λ(x), we have mẍ + λ(x)ẋ − f (x) = 0.
Next consider a fixed algebraic surface f (x) = 0 in Rn. We make the assumptions that f

is smooth and zero is its regular value. The second assumption ensures that Sconfig = f −1(0) is
a close regular (n−1)-dimensional differential submanifold in Rn. Moreover, this assumption
guarantees ∇f �= 0; so we can use the gradient to define the normal vector on Sconfig.

The set of constraints now consists of two elements:

!1 ≡ f (x) = 0 !2 ≡ p · ∂f
∂x

= 0. (6.4)

For the Poissonian dynamics both the above constraints !i are second-class in the Dirac
classification.

Denoting the unit normal vector to the surface f at the point x by n(x), n(x) = 1
|∂f /∂x|

∂f

∂x ,
the antisymmetric Dirac brackets for the Poissonian part of our construction are

{xi, xj }D = 0 {xi, pj }D = δij − 1∣∣∣ ∂f
∂x

∣∣∣2

∂f

∂xi

∂f

∂xj
= δij − ni(x)nj (x)

{pi, pj }D = 1∣∣∣ ∂f∂x

∣∣∣2

{
∂f

∂xj

[
p · ∂

∂x

]
∂f

∂xi
− ∂f

∂xi

[
p · ∂

∂x

]
∂f

∂xj

}
(6.5)

= nj (x)
[

p · ∂

∂x

]
ni(x)− ni(x)

[
p · ∂

∂x

]
nj (x).
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For the semimetric dynamics only the second constraint !2 is second-class. The
symmetric Dirac brackets for the semimetric part

≺xi, xj�D = 0 = ≺xi, pj�D ≺pi, pj�D = δijλi −
λi(x)λj (x)

∂f

∂xi

∂f

∂xj∑
k λk(x)

∣∣∣ ∂f

∂xk

∣∣∣2 . (6.6)

In particular, when λi(x) = λ(x), the symmetric Dirac brackets can be written in the form

≺xi, xj�D = 0 = ≺xi, pj�D ≺pi, pj�D = λ(x)[δij − ni(x)nj (x)]. (6.7)

Finally take a union of these two Dirac structures

{{xi, xj }}D = 0 {{xi, pj }}D = δij − ni(x)nj (x)

{{pi, pj }}D = 1∣∣∣ ∂f
∂x

∣∣∣2

{
∂f

∂xj

[
p · ∂

∂x

]
∂f

∂xi
− ∂f

∂xi

[
p · ∂

∂x

]
∂f

∂xj

}

− λi(x)


δij − λj (x)

∂f

∂xi

∂f

∂xj∑
k λk(x)

∣∣∣ ∂f

∂xk

∣∣∣2


 . (6.8)

When the Hamiltonian for that system has the form H = p2

2m +V (x), the dissipative Hamilton–
Dirac equations of motion follow as

ẋi = {xi,H} − ≺xi,H� = 1

m
[pi − ( p · n)ni] = pi

m

ṗi = {pi,H} − ≺pi,H� = Fi −
[

F · n +
1

m
p ·

[(
p · ∂

∂x

)
n
]]

ni

− λi(x)
m


pi − ∂f

∂xi




∑
j λj (x)

∂f

∂xj
pj∑

k λk(x)
∣∣∣ ∂f

∂xk

∣∣∣2





 . (6.9)

For isotropic damping, when λi(x) = λ(x), we can rewrite these equations of motion in the
Newtonian form as

mẍ + λ(x)ẋ = F(x)−
[

F(x) · n(x) + mẋ · d

dt
n(x)

]
n(x). (6.10)

6.2. Variety dynamics of damped rigid body

The usual Poisson brackets for a rigid body angular velocity vector  ω, after suitable rescaling,
are

{ωi, ωj } = εijkωk. (6.11)

Suppose that there is no second-type constraint for the Poisson part of the body dynamics and
just one such a constraint for its symmetric part. Assume now that this constraint is such that
the system energy (or any Casimir function for the metric part) is constant. The choice of that
constraint determines the details of the semimetric–Poissonian structure.

Using the canonical metric brackets (4.16) and the constrained energyH, from example 4.3
we obtain the Dirac metric bracket for a rigid body (4.17). Combining these two structures
one finds the metric–Poissonian brackets for a rigid body [9]:

{{ωi, ωj }} = {ωi, ωj } − λ≺ωi, ωj�D = εijkωk − λ

[
δij

(
3∑

k=1

I 2
k ω

2
k

)
− IiIjωiωj

]
. (6.12)
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Consider the system ‘free energy’

( = H − S = 1

2

[
3∑

k=1

Ikω
2
k

]
− S(|ω|2) (6.13)

The equations of energy-conserving motion for the damped body are

ω̇1 = {{ω1,(}} = {ω1,H} + λ≺ω1,S�D

= ω2ω3(I2 − I3) + 2λS ′ω1
[
I2(I2 − I1)ω

2
2 + I3(I3 − I1)ω

2
3

]
and its cyclic permutation. (6.14)

The dissipation of the free energy follows

(̇ = −Ṡ = −λ≺S,S�D = −λ

[∣∣∣∣∂S∂ω
∣∣∣∣
2
(

3∑
k=1

I 2
k ω

2
k

)
−

(
Iiωi

∂S
∂ωi

)2
]

� 0 (6.15)

and there is no dissipation of energy iff I1 = I2 = I3.
Alternatively, we can derive a new semimetric–Poissonian bracket by combining metric

bracket (4.18) with the standard Poisson bracket for the rigid body

{{ωi, ωj }} = {ωi, ωj } − λ≺ωi, ωj�D = εijkωk − λ|ω|
[
δij − IiIjωiωj∑3

k=1 I
2
k ω

2
k

]
. (6.16)

Equations of motion following from the free energy (6.13) are

ω̇1 = {{ω1,(}} = {ω1,H} + λ≺ω1,S�D

= ω2ω3(I2 − I3) + 2λS ′|ω|ω1
I2(I2 − I1)ω

2
2 + I3(I3 − I1)ω

2
3∑3

k=1 I
2
k ω

2
k

and its cyclic permutation. (6.17)

Finally, we derive a new semimetric–Poissonian bracket by combining metric bracket (4.21)
with the standard Poisson bracket for the rigid body

{{ωi, ωj }} = {ωi, ωj } − λ≺ωi, ωj�D = εijkωk − λ|ω|
[
δij − ωiωj

|ω|2
]
. (6.18)

Again using the free energy (6.13) we find

ω̇1 = {{ω1,(}} = {ω1,H} − λ≺ω1,H�D

= ω2ω3(I2 − I3)− λ|ω|ω1

[
I1 −

∑3
k=1 Ikω

2
k

|ω|2
]

and its cyclic permutation. (6.19)

The above dynamics does not conserve the energy, but |ω|2 remains the system Casimir. The
energy dissipation is given by

Ḣ = −λ≺H,H�D = −λ|ω|
[∑

k

I 2
k ω

2
k −

(∑
k Ikω

2
k

)2

|ω|2
]

� 0 (6.20)

since
(∑

k I
2
k ω

2
k

) |ω|2 �
(∑

k Ikω
2
k

)2
. For λ > 0, |ω| > 0, there is no dissipation of energy

when I1 = I2 = I3.
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6.3. Classical damped spins

The Poisson bracket for lattice spins{
Si
a, S

j

b

}
= δabεijkS

k
a (6.21)

where a labels the spin location and k = 1, 2, 3, guarantees that the length of each spin |Sa|
is a Casimir. Our model is based on the assumption that there are no second-class constraints
for the Poissonian part and only one constraint for the metric part.

Starting from the canonical metric bracket (4.11) and using the length of the spins |Sa|
constraint, as in example 4.2, we obtain the Dirac metric bracket for lattice spins (4.13).
Combining these two structures one finds the metric–Poissonian of lattice spins [8]:

{{
Si
a, S

j

b

}}
=

{
Si
a, S

j

b

}
− λ≺Si

a, S
j

b�D = δabεijkS
k
a − λδij |Sa|

[
δab − Si

aS
j

b

S2
a

]
(6.22)

where λ is the damping coefficient.
Now we can easily derive the Landau–Lifshitz–Gilbert equation of classical damped

lattice spins

Ṡa = {{Sa,H}} = Sa × Bef,a − λ
Sa × (Sa × Bef,a)

|Sa| (6.23)

where Bef,a = − ∂H
∂Sa

is the effective magnetic field acting on the spin Sa .
The dissipation of energy follows

Ḣ = −λ≺H,H�D = −λ
∑
a

|Sa |
[

B2
ef,a − (Bef,a · Sa)

2

|Sa|2
]

� 0. (6.24)

6.4. Dissipative quantum mechanics

Combining canonical Poisson brackets for quantum mechanics (QM)

{)(x),)( y)} = {)∗(x),)∗( y)} = 0 {)( x),)∗( y)} = 1

ih̄
δ(x − y) (6.25)

and constrained metric brackets for QM (4.29), which were derived from the canonical metric
bracket for QM (4.28) for the physically important constraint, namely the conservation of
the wavefunction norm (probability conservation) as in example 4.5, we find a dissipative
metric–Poissonian structure for QM:

{{)(x),)( y)}} = {)(x),)( y)} − λ

h̄
≺)(x),)( y)�D = λ

h̄

)(x))( y)
2||)||2

{{)∗(x),)∗( y)}} = {)∗(x),)∗( y)} − λ

h̄
≺)∗(x),)∗( y)�D = λ

h̄

)∗(x))∗( y)
2||)||2

{{)(x),)∗( y)}} = {)(x),)∗( y)} − λ

h̄
≺)(x),)∗( y)�D (6.26)

= 1

ih̄
δ(x − y)− λ

h̄

[
δ(x − y)− )(x))∗( y)

2||)||2
]

where λ is the (undefined) damping constant.
Using the conventional Hamiltonian for the Schrödinger equation

H(),)∗) = 〈)|H |)〉 =
∫

dnx)∗(x)H)(x) (6.27)
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where H is the quantum mechanical (self-adjoined) operator, we obtain the evolution of the
wavefunction in the form

ih̄∂t)(x) = ih̄{{)(x),H}} = H)(x) + iλ

[ 〈)|H |)〉
||)||2 −H

]
)(x). (6.28)

This equation is known as the Gisin dissipative wave equation [11]. Here the construction of
the semimetric bracket ensures that the norm of the state vector is reserved (so the probability
is conserved) since it is a second-class constraint for the semimetric part. The dissipation of
energy follows

Ḣ = −≺H,H� = 2λ

h̄

[
−||H)||2 +

〈)|H |)〉2

||)||2
]

� 0

(Schwartz inequality). (6.29)

In the above equation the equality is achieved for ) which are the eigenstates of the
Hamiltonian. The damping in the Gisin equation refers, therefore, to the transition amplitudes
only. When the initial wave packet is constructed from eigenstates corresponding to energies
E � E0 then the final state of the evolution described by equation (6.28) is the eigenstate with
energy E0. This property distinguishes the Gisin dissipative wave equation from the other
dissipative Schrödinger equations.

6.5. Viscous fluid dynamics

In fluid mechanics the state of an isothermal fluid is described by its mass density and velocity
fields (C,u) or by (C, J ) where the current J field equals J = Cu. The semimetric structure
for fluid dynamics [8] follows

≺C(x), C( y)� = 0 ≺C(x), Jk( y)� = 0
(6.30)

≺Jk(x), Jl( y)� = −
[
a

∂2

∂xk∂xl
+ ηδkl�x

]
δ(x − y)

where a = ζ + η

3 and ζ, η are the bulk and shear viscosity, respectively.
The structure (6.30) is semimetric, indeed ∀G we have

≺G,G�(C, J ) = −
∑
k,l

∫
dx dy

δG
δJk(x)

{[
a

∂2

∂xk∂xl
+ ηδkl�x

]
δ(x − y)

}
δG

δJl( y)

=
∫

dx

{
a

[
∇ · δG

δJ(x)

]2

+ η
∑
k

∣∣∣∣∇
[

δG
δJk(x)

]∣∣∣∣
2
}
. (6.31)

Note that this is not a metric bracket, since any functional which depends only on C has zero
semimetric bracket with itself. Also note that the kinetic fluid energy Ekin = ∫

dx J2/2C
dissipation follows directly from (6.30)

Ėkin = −≺Ekin, Ekin� = −
∫

dx

{
a

[
∇ · J

C(x)

]2

+ η
∑
k

∣∣∣∣∇ Jk

C(x)

∣∣∣∣
2
}

� 0. (6.32)

In classical hydrodynamics a particular role is played by the incompressible fluid assumption,
for the incompressible viscous fluid according to equation (4.36) we have

≺C(x), C( y)�D = 0 ≺C(x), Ji(y)�D = 0
(6.33)

≺Ji(x), Jj ( y)�D = −η

[
δij�x − ∂2

∂xi∂xj

]
δ(x − y).
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The dissipative energy for the viscous incompressible fluid should be easily calculated as
follows:

Ėkin = −≺Ekin, Ekin�D = −η

2

∫
dx

{∑
k,l

(
∂uk

∂xl
+
∂ul

∂xk

)2
}

� 0. (6.34)

Finally, put ν = η

C0
, the kinematic viscosity, using (6.33) and from the Poisson part calculated

in [7] we easily derive non-local evolutional equations for the incompressible viscous
fluid

∂u
∂t

+ (u · ∇)u − ν�u = ∇
∫

d z G(x − z)∇z [(u · ∇)u − ν�zu] . (6.35)

7. Final comments

The description of the dissipative systems dynamics is usually undertaken within the
framework of non-equilibrium statistical mechanics. The ‘simplified’ version of the full many-
body description often used in applications, for example, in phase transformation physics,
statistical theory of turbulence, granular media dynamics etc, is the kinetic equation for the
time evolution of the ‘relevant degrees of freedom’ distribution function. This equation is
derived making strict assumptions about the nature of the fluctuations in the system—the
underlying stochastic process performed by the relevant system degrees of freedom in the full
phase space of the physical model. The equations of motion for the coarse-grained variables
describing the meso- or macroscopic system properties are obtained from the kinetic equation
by one of the known procedures, which are well-justified and understood, and occasionally
are just a heuristic chain of semi-mathematical operations.

In this paper, we have discussed a novel approach to the description of dissipative systems
dynamics, which is purely algebraic. Instead of making series of assumptions on the level of
microscopic physics of the problem we assume the existence of certain algebraic structure, akin
to that used in the Hamiltonian formulation of classical dynamics which permits us to derive
meso- or macroscopic dissipative equations directly from the system-free energy. The basic
ingredient of that procedure, the semimetric Leibniz bracket for dynamics variables over the
whole phase space, is postulated according to our knowledge about dissipative processes. With
knowledge of the Poissonian structure for the non-dissipative part of the system dynamics,
the symmetries of the problem and using Dirac machinery [1] one can easily derive different
Dirac structures, which are otherwise hard to postulate, describing dissipative dynamics. One
may use the algorithm proposed here to design a variety of dissipative dynamical systems with
the required conservative observables.

As shown in this paper, this permits us to build up the metriplectic dynamics scenario
for several non-trivial systems: classical particle physics, many spins dynamics, rigid body
dynamics, compressible and incompressible viscous fluid dynamics and some quantum
mechanical problems. Several other applications, notably the relativistic charged particle
systems which can also be formulated within the metriplectic scenario, have been discussed
previously [17, 18]. The quantum applications are of particular interest in view of some
similarity between the metriplectic approach and the Lindblads construction [19]—the
standard tool in dissipative quantum system analysis. We expect to comment on the connection
between both these approaches in a forthcoming publication.
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Appendix

A symmetric Leibniz bracket which satisfies the SJ identity is called an SP bracket. The tensor
G which generates the SJ bracket is called the SP tensor. In the local coordinates

∀i,j=1,2,...,N : 0 =
N∑
k=1

[
Gkj ∂G

ii

∂zk
−Gki ∂G

ij

∂zk

]
. (A.1)

Hence, the SP bracket and SP tensor are symmetric analogues to the Poisson bracket and
Poisson tensor, respectively. In particular, each symmetric tensor where Gij are constants (i.e.
do not depend on points) generates a SP bracket. For a non-trivial example of a SJ tensor, see
example A.1.

SP manifold is a pair (M,G) where G is a symmetric SP tensor of the type (2, 0).

Example A.1. It is easy to see that G = ∑N
i,j=1 zizj

∂
∂zi

⊗ ∂
∂zj

is a SP tensor. Hence, (RN,G)

is a SP manifold.

Similarly, with the concept of SJ identity one can define SL algebra, SP algebra which
are symmetric analogues of Lie algebra and Poisson algebra, respectively. To prove that
there is no other symmetric Jacobi identity we need a few elementary algebraic concepts.
By an identity of the algebra F we mean a polynomial P in some free algebra which is
identically zero when the generators are replaced by any elements of F . We are interested in
the three-linear identities in which each term involves two pairs of brackets, i.e. of the form:
a≺≺f, g�, h� + b≺≺f, h�, g� + c≺≺g, h�, f� = 0. Now we would like to prove the
following result:

Proposition A.1. There are exactly two types of three-linear identities for symmetric algebra
in which each term involves two pairs of brackets:

(a) The SE identity (symmetric version of the Engel identity): ∀f ∈ F: ≺≺f, f�, f� = 0.
(b) The SJ identity (symmetric version of the Jacobi identity):

∀f, g: ≺≺f, f�, g� = ≺≺f, g�, f�
⇐⇒ ∀f, g, h: 2≺≺f, g�, h� = [≺≺f, h�, g� + ≺≺g, h�, f�] .

Proof. Suppose that a≺≺f, g�, h�+b≺≺f, h�, g�+ c≺≺g, h�, f� = 0. For f = g = h

we have (a + b + c)≺≺f, f�, f� = 0, therefore the identity must be of the type (a) or
a + b + c = 0. If a + b + c = 0, then for f = h we have (a + c)≺≺f, g�, f� + b≺≺f, f�,

g� = 0, i.e. it must be of the type (b), since a + c = −b. �
Similarly, one can prove that there are exactly two three-linear identities in which each term
involves two pairs of brackets for antisymmetric algebra:

(a) The Engel identity:

∀f, g: {{f, g}, f } = 0 ⇐⇒ ∀f, g, h: {{f, g}, h} + {{h, g}, f } = 0.

(b) The Jacobi identity:

∀f, g, h: {{f, g}, h} + {{g, h}, f } + {{h, f }, g} = 0.

Even the Jacobi identity and SJ identity are formally similar as we have seen above, but
there also exists a fundamental difference between them. Indeed, the former is equivalent
to Xh{f, g} = {Xhf, g} + {f,Xhg}, i.e. Hamiltonian vector fields act as derivations for the
Poisson bracket, but for the latter 2XD

h≺f, g� = ≺XD
h f, g�+≺f,XD

h g�. In other words, the
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Jacobi identity manifests some basic features like cyclicity, derivation and signature property
while the SJ identity does not.

Furthermore, the most natural symmetric bracket ≺A,B� = AB+BA
2 does not satisfy the

SJ identity, in general. Hence, there is no natural representation for SP algebras.
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